Time-domain braiding of anyons

Mélanie Ruelle*1, Elric Frigerio1, Emmanuel Baudin1, Jean-Marc Berroir1, Bernard Placais1, Benoît Grémaud2, Thibaut Jonckheere2, Thierry Martin2, Jérôme Rech2, Antonella Cavanna3, Ulf Gennser3, Yong Jin3, Gerbold Ménard1, and Gwendal Feve†1

1Laboratoire de physique de l’ENS - ENS Paris – Sorbonne Université, Centre National de la Recherche Scientifique, Université Paris Cité, Département de Physique de l’ENS-PSL – France
2Centre de Physique Théorique - UMR 7332 – Aix Marseille Université, Université de Toulon, Centre National de la Recherche Scientifique – Centre de Physique ThéoriqueCampus de Luminy, Case 907163 Avenue de Luminy13288 Marseille cedex 9, France, France
3Centre de Nanosciences et de Nanotechnologies – Université Paris-Saclay, Centre National de la Recherche Scientifique : UMR9001, Centre National de la Recherche Scientifique – 10 Boulevard Thomas Gobert, 91120, Palaiseau, France

Résumé

Experimental evidence of anyon fractional statistics has been so far exclusively obtained in the DC regime, without possibility of a time-domain study. We demonstrate here the on-demand generation of subnanosecond single anyon current pulses. These pulses are artificial anyons whose fractional statistics can be continuously tuned by varying the fractional charge carried by each pulse (1,2,3). In this work, we use artificial anyons as a probe to study the dynamics of the tunneling of bulk topological anyons in the time domain.

We implement a Hong-Ou-Mandel (HOM) experiment between two artificial anyons at a quantum point contact (QPC) in a fractional quantum Hall fluid at filling factor \(\nu = 1/3 \). The incoming artificial anyons and the tunneling topological anyons braid at the QPC, thus effectively probing the role of anyon braiding on the characteristic timescale of anyon tunneling. We measure as proposed in (3) a HOM dip in the current noise at the outputs of the QPC, which width depends on the characteristic timescale for tunneling. By comparing integer and fractionally charged pulses, we observe that anyon dynamics is controlled by the scaling dimension, contrasting with the electron case where without braiding, the timescale for tunneling is set by the temporal width of the current pulses.

This experiment provides a new route for studying the role of braiding on the dynamics and temporal correlations of topological excitations. It also opens the way to a new generation of experiments where anyons are emitted on-demand in a circuit.

*Intervenant
†Auteur correspondant: gwendal.feve@ens.fr