Electron collisions in a Graphene Interferometer

Leo Pugliese^{*†1,2}, Himadri Chakraborti³, Alexandre Assouline², Kenji Watanabe⁴, Takashi Taniguchi⁴, Norio Kumada⁵, Christian Glattli², Heung-Sun Sim⁶, François Parmentier², and Preden Roulleau²

¹Université Paris-Saclay – CEA, CNRS, Université Paris-Saclay – France

²Groupe Nano-Electronique – Service de physique de l'état condensé, Institut Rayonnement Matière de Saclay – France

³Groupe Nano-Electronique – Service de physique de l'état condensé, Institut Rayonnement Matière de Saclay – France

⁴National Institute for Materials Science – Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japon

⁵NTT Basic Research Laboratories, NTT Corporation – 3-1 Morinosato-Wakamiya, Atsugi 243-0198,

Japon

⁶Department of Physics, Korea Advanced Institute of Science and Technology – Daejeon 34141, Corée du Sud

Résumé

Collisions of electronic excitations at an electronic beamsplitter provide an essential way of studying their coherence and indistinguishability. Their realization requires the generation of on-demand single electron excitations, their synchronization and the subsequent detection of the collision. We demonstrate coherent collisions of single electron excitations, generated by periodic voltage sine pulses, at a graphene Mach-Zehnder interferometer. Measuring and analyzing the shot noise of electrical current provides us with a complete view of the manipulated states' coherence structure : by tuning the time delay between the two injected excitations, we observe fermionic Hong-Ou-Mandel effect, whose visibility is a witness to the two-particle coherence, while the visibility of the Mach-Zehnder's interference pattern gives us access to single-particle coherence. The excellent visibilities enable comprehensive quantum state reconstruction, exemplified by the tomography of a Leviton state. The possibility of coherent operations involving flying qubits for entanglement is now within reach in graphene.

^{*}Intervenant

[†]Auteur correspondant: leo.pugliese@cea.fr