Transmon qubit readout using a nonlinear cross-Kerr interaction: QNDness versus readout photon number

Cyril Mori, Vladimir Milchakov, Francesca D’esposito, Tomás Ramos, Wael Ardati, Dorian Nicolas, Shelender Kumar, Vishnu Narayanan Suresh, Juan Jose Garcia-Ripoll, Quentin Ficheux, Nicolas Roch, and Olivier Buisson

1Institut Néel – Centre National de la Recherche Scientifique, Université Grenoble Alpes, Institut polytechnique de Grenoble - Grenoble Institute of Technology, Centre National de la Recherche Scientifique : UPR2940, Institut Polytechnique de Grenoble - Grenoble Institute of Technology – Institut NEEL, 25 rue des Martyrs, BP 166,38042 Grenoble cedex 9, France
2IQM, Finland – Keilaranta 19, 02150 Espoo, Finlande
3Instituto de Física Fundamental [Madrid] – Calle de Serrano, 123, 28006 Madrid, Espagne

Résumé

In the standard transmon readout scheme, the qubit is coupled directly to a microwave resonator through a transverse coupling. It has been observed that the qubit fidelity and readout QNDness deteriorate even under moderate drive powers and the qubit suffers from Purcell decay. To address these issues, our experiment relies on a multimodal circuit called the transmon molecule, consisting of a qubit mode and an ancilla mode, with a non-perturbative cross-Kerr interaction between them (1,2). The circuit is placed inside a 3D readout cavity such that the qubit mode (resp. the ancilla mode) is uncoupled (resp. coupled) to the cavity field. The ancilla-cavity coupling leads to two hybridized polaritonic meters which also inherit the cross-Kerr coupling to the qubit. This results in a large qubit-dependent displacement of the meters that can be read out without causing Purcell decay. The talk will present this alternative readout scheme and discuss the impact of increasing readout power on the readout fidelity and QNDness. (1) I. Diniz et al, Phys. Rev. A 87 033837 (2013). (2) R. Dassonneville et al, Phys. Rev. X 10, 011045 (2020).